
U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

National
Computer
Systems

Laboratory

COMPUTER MEASUREMENT
RESEARCH FACILITY

FOR HIGH PERFORMANCE
PARALLEL COMPUTATION

NISTIR 4331

Emulation Through
Time Dilation

John Ke Antonishek
Robert D. Snelick

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

National Computer Systems Laboratory

Advanced Systems Division

Gaithersburg, MD 20899

May 1990

Partially sponsored by
• Defense Advanced Research Projects Agency
• Department of Energy

NATIONAL mSTITUTE OF STANDARDS &
TECHNOLOGY

Research Information Center

Gaithersburg, MD 20899

DATE DUE

>

s

Demco, Inc. 38-293

NISTIR4331

EMULATION THROUGH TIME DILATION

John K. Antonishek
Robert D. Snelick

Advanced Systems Division

Nadonal Computer Systems Laboratory

National Institute of Standards and Technology

Gaithersburg, MD 20899

Partially sponsored by the

Defense Advanced Research Projects Agency

1400 Wilson Boulevard

Arlington, Virginia 22209

To appear in the proceedings of the

Fifth Distributed Memory Computing Conference,

Charleston, South Carolina, April 1990

May 1990

U.S. DEPARTMENT OF COMMERCE, Robert A. Mosbacher, Secretary

National Institute of Standards and Technology, John W. Lyons, Director

TABLE OF CONTENTS

Page

1. Introduction 1

2. Implementation 2

3. Interpretation 3

3.1 Approach .3

3.2 Example Application: A Ring Model 4

3.3 Analysis 5

3.4 Results 6

3.4.1 Example 1: Computationally Bound Application 6

3.4.2 Example 2: Communication Bound Application 7

4. Conclusion 8

4.1 Acknowledgments 8

5. References 9

-111-

EMULATION THROUGH TIME DILATION

John K. Antonishek
Robert D. Snelick

Computation and communication are the primary dichotomy of loosely-

coupled multiprocessor resources. Modeling and simulation are the techniques

used to estimate machine performance based on the speed of these resources. The
accuracy of the resulting performance estimates is often questionable, since such

techniques cannot usually take into account all of the system detail: They become

intractable in effort. Any real, hardware implementation of a multicomputer

immediately fixes the speed of its resources, and can only yield a single point on the

performance curve. We have implemented a third technique, called time dilation

[2], to evaluate the performance of loosely-coupled multiprocessors by varying the

ratio of computation speed to communication speed. This technique requires a

high-speed clock and a test multicomputer system. Time dilation provides a way to

measure accurately the performance of a given program on a variation of the

physical transport system of a real machine.

Keywords: communication; emulation; hypercube; measurements; models;

performance; time dilation.

1. Introduction

MIMD (Multiple-Instruction stream, Multiple-Data stream) machines are commonly
subdivided into two categories: shared memory machines and distributed memory
machines. In shared memory machines, processors communicate through access to a

common memory via an interconnection network (usually a bus). In distributed memory
machines, every processor has its own private memory, and all communication and syn-

chronization between processors is done via messages. The examples to follow are

implemented

No recommendation or endorsement, express or otherwise, is given by the National Institute of Standards

and Technology or any sponsor for any illustrative items in the text. Partially sponsored by the Defense

Advanced Research Projects Agency, 1400 Wilson Boulevard, Arlington, Virginia 22209 under ARPA
Order No. 7223, April 15, 1987.

- 1 -

on an architecture of the latter type. The particular topology is a hypercube with 16 pro-

cessors. The hypercube is a coarse grain-size machine; it possesses a limited number of

powerful nodes. Communication between processors on such a machine is often expen-

sive, and must be considered in the evaluation of a hypercube application. Time dilation

aids in this evaluation by emulating various transport speeds of the communication sys-

tem.

Algorithm performance on loosely-coupled machines is sometimes hindered by com-
munication speeds, and at other times by poor algorithm design. Current methods of in-

vestigating the effects of communication speeds are modeling and simulation. We have
implemented a third method called "time dilation" [2], which can be used to accurately

emulate the performance of loosely-coupled multiprocessors by varying the ratio of two
parameters: communication time and computation time.

Time dilation provides a way to investigate how increased communication speeds

affect the performance of a particular application and architecture. This is achieved by
allowing the user to increase, or dilate, the computational portion of the code by a

specified factor, thereby creating the appearance that the communication speed has in-

creased in relationship to the rate of computation. Time dilation will allow the user to

readily and accurately determine to what extent a modified architecture (faster communi-
cations) of the particular machine would benefit that particular application. The advan-

tage of this type of emulation is that all effects of the system are still present, whereas in

simulation and modeling, not all system effects can be accurately accounted for. Howev-
er, time dilation will only provide insight as to how a particular application will benefit

from increased communications speed for the specific architecture upon which the time

dilation experiments are performed. Time dilation provides a way to accurately predict

the behavior of an application without taking the very expensive (and single-point) alter-

native of redesigning the communication hardware. A discussion on our implementation
of time dilation and the results obtained from our preliminary experiments follows.

2. Implementation

To perform time dilation experiments, the operating system of the machine under in-

vestigation must be instrumented with code to perform the dilation function. This addi-

tional operating system code relies on a high-speed clock to accurately and quickly

measure the computation and communication intervals. The high speed clock is provided
by our Loosely-coupled TRAce Measurement System (LTRAMS). LTRAMS is a hybrid
performance measurement tool that, among other things, provides a readable clock accu-

rate to one microsecond [1],[7],[8].

An important distinction must be made between the computation and message por-

tions of the code. The computational portion, at least for our preliminary experiments,

includes the user computational work, the operating system routines called by the user,

operating system message handling routines {such as packet formation), and miscellane-

ous operating system tasks {such as interrupt handling and context switching). The han-

dling of a message by the operating system, including packet and header formulation, is

considered part of the computation time because we are investigating just the effect of in-

creased transmission speed of communication, not the actual method of message passing.

A message passing implementation may include hardware formulation of headers, which
does not require use of the CPU. This distinction can be changed in later experiments.

-2-

The user specifies the dilation factor (D) to the operating system through an operat-

ing system call. The user only has to add the statement specifying the dilation factor to

the existing code to perform a time dilation experiment. To determine whether an appli-

cation would benefit from faster communications, the user runs the application with a di-

lation factor of one (no change), and then runs the application with other dilation factors,

all greater than one. The overall time for the application to complete for each run is "nor-

malized" by dividing the time obtained from the run by the dilation factor for that partic-

ular run. If the normalized time from the run is nearly the same as the time from the run

with a dilation factor of one, the application will not benefit much from an increase in

communication speed. However, if the normalized time from the run is smaller than the

run with a dilation factor of one, then the application would benefit. The larger the

difference, the more the application can be expected to benefit from an increase in com-
munication speed.

The implementation of time dilation for a loosely-coupled machine requires consid-

ering the period, r, between two user-initiated communication events (i.e., the time

between a send-and-receive, send-and-send, etc.) as containing four distinct parts: t2,

and ^4, where:

= user execution time

t2 = system time in support of this process

^3 = system time in support of other users (i.e., message store and forward)

^4 = system time waiting for a communication to complete

The time that is to be dilated is q + ^2 (^he computation time), thus

= t + (D -
1)

* However, q and t 2 are not easily measurable times, so the

quantity + t 2 is computed from known times t -{1^ + t^). If the time for exceeds the

computed dilation time {i.e., > t„^), then no dilation will take effect for this interval be-

cause the logical delay has exceeded the dilation time.

3. Interpretation

3.1 Approach

A program’s service demand on a hypercube can be analyzed by investigating two
modes of execution: computation and communication. A computational step is an arith-

metic or logic operation performed on a datum within a processor. The computational
portions of the code includes system interrupts and other operating system services that

steal computational cycles from the program. For these preliminary experiments, the

evaluation of the computational partition of a program is divided into two components:
user time (composed of an application’s computation, operating system services, and

-3 -

system interrupts excluding interrupts for communication) and communication interrupt

time.

In a communication step, a datum travels from one processor to another through the

communication network. This communication service demand of a program is also

defined as having two components: receive time and send time. Receive time is the

measurement of time from an initiation of a receive request until completion of that re-

quest; this includes delays due to synchronization. Send time is composed of the meas-
ured time for a process to dispatch a message.

The partitioning of components to analyze a homogeneous hypercube program can

be represented in a use tree (UT)[6]. A UT describes the system’s dominant features.

Figure 1 illustrates a UT skeleton for the evaluation of a general application on a hyper-

cube. The measured execution time of the components sum to the overall service

demand of the program. This provides a basis for analysis of an application on the hy-

percube. The examples that follow use these component times and show how they are

affected by a faster physical transport network.

Figure 1. UT Skeleton for Hypercube.

3.2 Example Application: A Ring Model

The test algorithm is a synthetic ring benchmark that models applications which ex-

emplify global process dependencies[3],[4],[5]. Molecular dynamics codes have compu-
tations of this character. The ring application is an implementation of a specific case of

the UT diagram (Figure 1). It uses synchronous receive and asynchronous send proto-

cols.

-4-

The program works as follows: A synthetic ring with nearest neighbor connections

is created with N logical nodes. Each node (process) will originate a given number of

messages, and additionally, process all other messages passing by. Each message makes
a complete circuit around the ring, while being processed synthetically by each node.

Once a message returns to its originator, it is removed from the ring network. Another
message will be sent until that node has sent all of its messages. When all nodes have
processed all of their messages the program is complete.

The ring provides a set of parameters that allows the user to simulate a wide range of

application settings. The list of parameters includes the number of nodes in the ring,

message length, the number of messages, and computation per datum. Communication in

the ring is semi-synchronous, with messages being acknowledged within the program on
a one-to-one basis. This flow control limits the number of messages piling up on a given

node thus preventing buffer overflows. For this algorithm all communications (i.e., mes-
sages) are between neighboring physical nodes on the hypercube.

3.3 Analysis

To evaluate results, a normalized time (T^) is defined as the average node service

time (r) for a component {e.g,, receive service time equals the average receive time for
N nodes) divided by the dilation factor (D). The dilation factor (D) signifies the emulat-

ed speedup of the physical transport system. E is the overall elapsed execution time of

the dilated program and is a normalized elapsed time.

T E
E " and “

D D

Normalized time gives a measure of what a component’s time, such as receive time, or

the overall execution time of the program will be on a machine with a faster physical

transport system.

Another measure that is useful is the speedup of the application for a given D . This

is obtained by dividing E^ {i.e., E^ is the overall execution time of an undilated program)
by Ej^ with a D greater than one.

Speedup = {where D > 1)

Ed

Speedup gives an indication of what the faster communication transport system yields in

terms of overall execution time {i.e., wall clock time) performance of a program.

-5 -

3.4 Results

Time dilation provides a way to investigate how a faster communication transport

system affects performance of a given application and architecture. To illustrate this, two
example problems are demonstrated from the ring benchmark. One investigates an appli-

cation that is mostly computationally bound. Another shows an example at the other ex-

treme: the application is burdened with frequent communications. Table 1 shows the ap-

plication signatures [6] {i.e., percent of time spent in a given mode) of the examples to fol-

low.

APPLICATION condensed SIGNATURE COMPONENTS
User Comm. Intr. Receive-Wait Async. Send

EXl: Computation 93.7% 0.5% 5.5% 0.3%

EX2: Communication 19.9% 5.1% 73.5% 1.5%

Table Signatures of Two Ring Settings.

3.4.1 Example 1: Computationally Bound Application. As expected, for a mostly
computationally bound program {See Table 7), the normalized components show little

change with dilation. Figure 2 shows results. Normalized times are plotted for the four

service demand components and overall execution time. User time makes up the majori-

ty of the overall execution time. Since the communication components demand little

processing in such an application, clearly only slight benefit is derived from a faster tran-

sport system.

50-

40-

Normalized
~ — program

Time receive

...... interrupt

— send

10- (from top to bottom)

0- =

0 2 4 6 8 10 12 14 16

Physical Transport Speedup {D)

Figure 2. Normalized Time for Program and Service Demand
Components for a Computational Bound Application.

-6-

The speedup for this example is negligible. No matter how much the communication
system is enhanced, this application stands little chance for improvement. The user

should investigate other areas to increase performance for this application. Since the

computation load is high, the speed of the processor is the logical choice for investiga-

tion.

3.4.2 Example 2: Communication Bound Application. In this example the parameter

settings for the ring are adjusted to simulate an application with frequent communica-
tions {See Table 1). Figure 3 illustrates results for dilation factors from one to sixteen.

Normalized

Time

Figure 3. Normalized Time for Program and Service Demand
Components for a Communication Bound Application.

As shown in the graph, the time spent in receive mode is significantly reduced as the

speed of the physical transport system is increased. The reduction in this component
directly accelerates overall execution of the program. This is clearly indicated by the

shapes of the normalized program time and normalized receive time curves. With a tran-

sport system twice as fast, normalized receive time is reduced from 10.0 seconds to 3.85

seconds. Normalized receive time continues to decrease {down to 0.8 seconds) with a

transport system speedup of four. At this point the computation-communication balance

of the program shifts towards the computation end. In fact, the communication portion of

the code now only makes up 22.1% {previous 73.5%) of the overall execution time of the

program.

The speedup curve for example 2 is plotted in Figure 4. It is evident for this applica-

tion that a significant increase in performance can be obtained from a faster communica-
tion system.

-7 -

4-

Application

Speedup

3-

2 -

1 -

0 2 4 6 8 10 12 14 16

Physical Transport Speedup (D

)

Figure 4. Speedup for a Communication Bound Application.

If the modified architecture has a communication system twice as fast as the original, this

program exhibits a speedup of L8. This figure climbs to 3.5 when the transport system is

four times as fast. The speedup of the program peaks to 3.7 with a dilation factor of 6.

Beyond this point the curve asymptotically flattens off. The user would no longer benefit

from any further enhancements to the communication system.

In the previous example, the application exhibits increased performance and thus

will benefit from enhanced communication capabilities. However, if an application with

a similar signature (i.e., communication bound) shows little speedup, it may be an indica-

tion that the algorithm is logically poor. In this case, logical delays are a problem, and
revision of the algorithm should be considered. This is a topic that will be given a

thorough treatment in the future.

4. Conclusion

Time dilation provides an accurate method to investigate various communication
speeds of a loosely-coupled multiprocessor; this aids in the evaluation of a hypercube ap-

plication. An application that exhibits increased performance with dilation will benefit

from an enhanced physical transport system. However, an application that shows little

change with dilation may indicate (i) a good match between algorithm and architecture

or (ii) a logically poor algorithm. Time dilation allows the user to perform necessary

winnowing before exploring other architectural alteratives.

4.1 Acknowledgments

The original design sketch for time dilation was proposed by Gordon Lyon during

- 8 -

development of the hardware instrumentation; he also proposed the interpretation of the

results seen in the experiments. Gordon Lyon and Alan Mink read earlier versions of the

text and suggested numerous details for improvement.

5. References

[1] Carpenter, R., Performance Measurement Instrumentation for Multiprocessor Com-
puters, in High Performance Computer Systems, E. Gelenbe, ed., pp 81-92, Elsevier

Science Publishing Co., New York, NY, 1988.

[2] Lyon, G. Personal communication: Concept of Time Dilation for Performance Meas-
urement of Loosely-Coupled Multiprocessors, circa February 1988; A Simple Emula-
tor for Variable Hardware Balance on a Hypercube, May, 1988; Time Dilation (Logi-

cal vs. Physical Delay), September, 1989.

[3] Lyon, G. On Parallel Processing Benchmarks. NBSIR 87-3580, June, 1987, 35pp.

[4] Lyon, G. Design Factors for Parallel Processing Benchmarks. Jour, of Theoretical

Computer Science, April, 1989, 175-189.

[5] Lyon, G. and Snelick, R. Architecturally-Focused Benchmarks with a Communica-
tion Example. NISTIR 89-4053, March, 1989, 38pp.

[6] Lyon, G. Hybrid Structures for Simple Computer Performance Estimates.

NISTIR 89-4063, March, 1989, 24pp.

[7] Mink, A., Draper, J., Roberts, J. and Carpenter, R., Hardware Assisted Multiprocessor

Performance Measurements, Proc. of The 12th IFIP WG 7.3 International Symposium
on Computer Performance: Performance 87, Brussels, Belgium, Dec. 1987, pp 151-

168.

[8] Roberts, J., Antonishek, J. and Mink, A., Hybrid Performance Measurement Instru-

mentation for Loosely-Coupled MIMD Architectures, The Fourth Conference on Hy-
percubes, Concurrent Computers, and Applications, Monterey, CA, March 1989

-9-

NIST.114A U.S. DEPAfTTMENT OP COMMERCE
(RiV. NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

BIBLIOGRAPHIC DATA SHEET

1. PUBUCAT10N OR RiVORT IRIMBER

NISTIR 4331
2. FERFORMMQ ORGANIZATION REPORT NUMBER

3. PUBUCAHON DATE

May 1990
4. TITIJI AN© SUBTITLE

Emulation Through Time Dilation

S: AUTHOR(S)

John K. Antonlshek and Robert D. Snelick
8. PERFORMING ORGANI^TION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OP STANDARDS AND TECHNOLOGY
GATTH^SBURG, mo 2(»9S

7. CONTRACT/GRANT NUMBER

8. TYPE OF REPORT AND PERIOD COVERED

9. SPONSORINa OROAMIZATION NAMi AND COMPLlTf ABORiSS (STRi^, CITY. STATE, ZIP)

Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

10.

SUPPIJMENTARY NOTES

OOCUMBIT DESCRIBES A COMPUTER PROGRAM; SF-1 FIPS SOFTWARE SUMMARY, IS ATTACHEO.

11.

ABSTRACT (A 200-WORO OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION.
LITERATURE SURVEY, MENTION IT HERE.)

IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOGRAPHY OR

Computation and communication are the primary dichotomy of loosely-coupled multiprocessor
resources. Modeling and simulation are the techniques used to estimate machine performance
based on the speed of these resources. The accuracy of the resulting performance estimates
is often questionable, since such techniques cannot usually take into account all of the

system detail: They become intractable in effort. Any real, hardware implementation of a

multicomputer immediately fixes the speed of its resources, and can only yield a single
point on the performance curve. We have implemented a third technique, called time
dilation [2], to evaluate the performance of loosely-coupled multiprocessors by varying
the ratio of computation speed to communication speed. This technique requires a high-
speed clock and a test multicomputer system. Time dilation provides a way to measure
accurately the performance of a given program on a variation of the physical transport
system of a real machine.

12.

KEY WORDS (S TO 12 ENTRIES; ALPHABETICAL ORDER; CAFfTAUZE ONLY FROFER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

communication; emulation; hypercube; measurements; models; performance; time dilation

13.

AVARABILITY

UNUMITEO

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD, VA 22161.

14. NUMBER OF PRINTED PAGES

13

15. PRICE

AO 2

: ELECTRONIC FORM

i

I

